Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Shu Li and Wei-Ke Su*

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China

Correspondence e-mail: suweike@zjut.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.033$
$w R$ factor $=0.086$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Methylphenyl benzyl sulfone

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$, the dihedral angle between the two benzene rings is $15.5(1)^{\circ}$. In the crystal structure, an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction links the molecules into zigzag chains along the a axis.

Comment

Readily available sulfones have become useful building blocks in the preparation and functionalization of a wide variety of products (Alonso et al., 2002). In the study of sulfones, some unconventional methods of synthesis have been adopted. The preparation of ethyl phenylsulfonylacetate is an example of microwave-assisted synthesis (Kingston \& Haswell, 1997). The title compound, (I), can also be synthesized under microwave irradiation. The crystal structure of phenyl benzyl sulfone, (II), which is a similar compound to (I), has been reported previously (Liu et al., 2005).

(I)

The dihedral angle between the planes of the benzene rings is $15.5(1)^{\circ}$. In the crystal structure, an intermolecular C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2) links the molecules (Fig. 1) into zigzag chains along the a axis (Fig. 2). It is interesting that the crystal structure of (I) is chiral, although the molecule has no chiral atom. In contrast, the crystal structure of (II) is achiral (space group Pna $_{1} ; Z=4$; Liu et al., 2005).

Experimental

Compound (I) was synthesized in 70\% yield by the hydrocarbylation of sodium 4-methylphenylsulfinate dihydrate ($2.13 \mathrm{~g}, 10 \mathrm{mmol}$) and benzyl bromide ($1.2 \mathrm{ml}, 11 \mathrm{mmol}$) in the presence of cetyl trimethylammonium bromide catalyst $(1.8 \mathrm{~g}, 5 \mathrm{mmol})$. The reaction

Figure 1
The molecular structure of (I) with the atom-numbering scheme, showing displacement ellipsoids at the 50% probability level.

Received 27 May 2005
Accepted 5 July 2005
Online 9 July 2005
\qquad
mixture was irradiated in a 630 W microwave oven for 1 min . Crystals of (I) suitable for X-ray data collection were obtained from an ethanol solution by slow evaporation.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$

$M_{r}=246.31$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.7135$ (5) \AA
$b=12.6191$ (10) \AA
$c=17.1549$ (14) \AA
$V=1236.85(18) \AA^{3}$
$Z=4$
$D_{x}=1.323 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.938, T_{\text {max }}=0.953$
6597 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.086$
$S=1.06$
2225 reflections
155 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 3217
reflections
$\theta=2.4-25.0^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.26 \times 0.24 \times 0.16 \mathrm{~mm}$

2225 independent reflections
2140 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-6 \rightarrow 4$
$k=-14 \rightarrow 15$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.047 P)^{2}\right. \\
& +0.2051 P]
\end{aligned}
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.016$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983),
903 Friedel pairs
Flack parameter: 0.08 (8)

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

S1-O1	$1.4252(16)$	$\mathrm{S} 1-\mathrm{C} 5$	$1.765(2)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4370(17)$	$\mathrm{S} 1-\mathrm{C} 8$	$1.788(2)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$118.45(11)$		
			$167.69(15)$
O1-S1-C8-C9	$52.69(18)$	$\mathrm{C} 5-\mathrm{S} 1-\mathrm{C} 8-\mathrm{C} 9$	
O2-S1-C8-C9	$-77.32(17)$		

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O}_{2}{ }^{\mathrm{i}}$	0.97	2.49	$3.447(3)$	168

[^0]

Figure 2
Illustration of a linear chain. Broken lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

H atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{Csp}^{2}-\mathrm{H}=$ $0.93 \AA$ and Csp ${ }^{3}-\mathrm{H}=0.97 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{Csp}^{2}, \mathrm{Csp}^{3}\right)$, while for methyl groups $\mathrm{C}-\mathrm{H}=0.96 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors thank the Commission of Science and Technology of Zhejiang Province (grant No. 2003 C24004) and the School of Chemistry and Materials Science, Wenzhou University, for supporting this work.

References

Alonso, D. A., Najera, C. \& Varea, M. (2002). Tetrahedron Lett. 43, 3459-3461. Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Winsonsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kingston, H. M. \& Haswell, S. J. (1997). Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation, and Applications. Washington, DC: American Chemical Society.
Liu, M. C., Ding, J. C., Feng, M. \& Wu, H. Y. (2005). Z. Kristallogr. New Cryst. Struct. 220, 23-24.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: Symmetry code: (i) $x+1, y, z$.

